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Abstract.  

Climate impact assessments require information about climate change at regional and ideally local scales. In 

dendroecological studies, this information has traditionally been obtained using statistical methods, which preclude the 10 

linkage of local climate changes to large-scale drivers in a process-based way. As part of recent efforts to investigate the 

impact of climate change on forest ecosystems in Bavaria, Germany, within the BayTreeNet project, we developed a high-

resolution atmospheric modelling dataset, BAYWRF, for the region of Bavaria over the thirty-year period of September 

1987 to August 2018. The atmospheric model employed in this study, WRF, was configured with two nested domains of 7.5- 

and 1.5-km grid spacing, centred over Bavaria and forced at the outer lateral boundaries by ERA5 reanalysis data. Based on 15 

a shorter evaluation period of September 2017 to August 2018, we evaluate two aspects of the simulations: (i) we assess 

model biases compared with an extensive network of observational data at both two-hourly and daily mean temporal 

resolutions, and (ii) we investigate the influence of using grid analysis nudging. The model represents variability in near-

surface meteorological conditions well, with a clear improvement when nudging is used, although there are cold and warm 

biases in winter and summer, respectively. We also present a brief overview of the full dataset, which will provide a unique 20 

and valuable tool for investigating climate change in Bavaria with high interdisciplinary relevance. Data from the finest 

resolution WRF domain are available for download at daily temporal resolution from a public repository at the Open Science 

Framework (Collier, 2020; https://www.doi.org/10.17605/OSF.IO/AQ58B). 

1 Introduction 

The forcing of climate change in modern times is clearly of global nature, and many important scientific problems can be 25 

understood at the global scale as well (e.g., Held and Soden, 2006). Climate impact assessments, however, must also 

understand the effects at regional and even local scales in order to develop appropriate adaptation and mitigation measures. 

Although local phenomena such as glaciers, lakes, vegetation patterns, or stream flow show a strong dependence on the 

large-scale climate dynamics, these proxies experience further variability when the large-scale signal is transferred to their 
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location (e.g., Mölg et al., 2014). In order to contextualize local changes, there is a need to link local climate to the large-30 

scale climate, ideally in a process-based way. 

 

In dendroclimatological studies, the traditional approach is to compute a calibration function between local or regional tree-

ring parameters and climatic variables. Typically, such a statistical relationship would try to utilize local station data (which 

are generally sparse), gridded observations (which tend to be coarse resolution), or indices of large-scale climate dynamics 35 

(which describe coupled atmosphere-ocean modes) as the climatic influence (e.g., Hochreuther et al., 2016). Besides known 

problems like stationarity (e.g., Frías et al., 2006), statistical approaches also limit the possibilities to explain the influences 

at the various scales on a process-resolving level. Dynamical downscaling with a full numerical atmospheric model provides 

a physical answer (Giorgi and Mearns, 1991), yet the disadvantage is the high computational cost. Hence, dynamical 

downscaling at near-kilometer resolution has traditionally been performed on a case-study basis for weather events (e.g., 40 

Gohm et al., 2008). Multi-decadal simulations, on the other hand, were typically limited to resolutions of tens of kilometers 

(e.g., Di Luca et al., 2016). With the progress of computational resources, dynamical downscaling is becoming a candidate 

for climate impact studies that require local-scale information, and the first decadal simulations at ~1-km resolution are now 

available (e.g., Collier et al., 2018). From the resultant model output, impact studies could utilize information about local 

meteorological conditions at high-spatial and high-temporal resolution, and over long, climatologically relevant temporal 45 

periods. Moreover, the physically consistent output would enable to generate the said process understanding of influences 

across the various climatic scales. 

 

The management of forests is a classical impact study where adaptation and mitigation measures meet the heterogeneous 

effects of climate change at local scales (e.g., Lindner et al., 2014). With this background, the project BayTreeNet was 50 

started recently under the umbrella of the interdisciplinary climatological research network Bayklif (https://www.bayklif.de; 

last accessed 1 March 2020), and aims to investigate the response of forest ecosystems to current and future climate 

dynamics across different growth areas in Bavaria, Germany. The project comprises a network of 10 measurement sites 

where meteorological and dendroecological data will be monitored and used both for research and for public and educational 

outreach. The locations were selected carefully to account for ecological and elevational variety in the study region, and the 55 

sites are currently in the process of being installed. High-temporal (approximately daily) and high-spatial resolution data is a 

key component of dendroecological impact studies, since the physiological behavior of trees, their structural properties and 

functional wood anatomy, as well as other important parameters such as wood density and mortality risk are not only 

influenced by seasonal averages, but also by short-term extreme events and weather anomalies (e.g., Bräuning et al., 2016). 

 60 

Previous regional climate simulations including Bavaria over continuous multi-decadal periods were performed with model 

resolutions as high as 5-7 km and up to the year 2009 (e.g., Berg et al., 2013; Warscher et al., 2019). However, to the best of 

our knowledge, such datasets at the kilometer scale and up to the near present do not yet exist, despite previous research 
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highlighting the importance of convection-permitting resolution in this region (Fosser et al., 2014). We address this data gap 

by performing simulations with an atmospheric model, configured with convection-permitting spatial resolution in a nested 65 

domain over Bavaria, for the recent climatological period of 1987 to 2018. These data were generated as part of the 

aforementioned BayTreeNet project in order to assess the dendroecological consequences of local climate change on forests 

in the study region. These data will also find multidisciplinary interest among researchers assessing ecological and human 

dependencies on the climate for scientific and practical questions. 

2 Methods 70 

2.1 Atmospheric model 

The atmospheric simulations were performed using the advanced research version of the Weather Research & Forecasting 

(WRF) model v. 4.1 (Skamarock and Klemp, 2008) configured with two one-way-nested domains of 7.5- and 1.5-km grid 

spacing situated over Bavaria (Fig. 1), hereafter referred to as D1 and D2. Terrain data were taken from NASA Shuttle Radar 

Topographic Mission data re-sampled to 1-km and 500-m grids (Jarvis et al., 2008; https://cgiarcsi.community/data/srtm-75 

90m-digital-elevation-database-v4-1; last accessed 24 May 2020) for D1 and D2, respectively, while land-use data was 

updated based on the European Space Agency Climate Change Initiative Land Cover data at 300-m spatial resolution 

(http://maps.elie.ucl.ac.be/CCI/viewer/download.php; last accessed 18 April 2018). The physics and dynamics options used 

in the simulations are based on recent convection-permitting applications of WRF by the authors (Collier et al., 2019) and 

are summarized in Table 1. We note that no additional urban physics were enabled beyond the default parameterization used 80 

by the Noah family of land surface models (Liu et al., 2006) and land-use sub-tiling was not enabled. 

 

Forcing data at the lateral boundary of D1 and bottom boundaries of both domains was taken from the ERA5 reanalysis 

(Copernicus Climate Change Service (C3S), 2017) at three-hourly temporal resolution. The 30-year simulation was divided 

into 30 annual simulations that were run continuously from 15 August of year n-1 to 31 August of year n. The first 16 days 85 

of each simulation were discarded as spin-up time, retaining data from 1 September of year n-1 onwards. Atmospheric 

carbon dioxide (CO2) was updated in WRF for each simulation year using annually and globally averaged concentrations at 

the surface from the National Oceanic and Atmospheric Administration Earth System Research Laboratory (Tans and 

Keeling, 2019). Each simulation employed the CO2 concentration of year n, which ranged from 351 to 407 ppm between 

1988 and 2018. All other parameters and bottom boundary conditions (e.g., vegetation and land use) were held constant for 90 

all simulations. Therefore, they do not capture the impact of known land-use changes over the study period (e.g., Fuchs et 

al., 2013). 

 

Each run required 12 days of wall-time with 320 processors on the Meggie compute cluster at the Erlangen Regional 

Computing Center, for a total of 2.86 million core hours. The model was compiled using intel 17.0 compilers and run using 95 

https://doi.org/10.5194/essd-2020-52

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 28 May 2020
c© Author(s) 2020. CC BY 4.0 License.



4 
 

distributed-memory parallelization. Model output was written at two-hourly intervals, amounting to more than 55 TB of 

data, in addition to ~30 TB of pre-processing and input files. 

 

2.2 Model Evaluation  

For detailed model evaluation, we selected the period of 00 UTC 1 September 2017 to 00 UTC 1 September 2018, as data 100 

availability is highest closest to present day and the summer of 2018 contained a record heatwave with drought conditions 

(Beyer, 2018). Neither extensive physics optimization nor a longer evaluation period was possible due to the computational 

expense of the simulations. For the evaluation period, we compared two test simulations (see Sect. 2.3) with data from the 

German Weather Service (DWD) Climate Data Center for all stations in Bavaria with hourly temporal resolution available, 

which provide good spatial coverage of our study area (Table 2; Fig. 2). We compared the following near-surface 105 

atmospheric variables: air temperature and relative humidity at 2 m (T and RH), zonal and meridional wind components at 10 

m (U and V), surface pressure (PS), and precipitation (PR). In our comparison, we excluded measurement sites where the 

observed terrain height differed from the modelled value by more than 100 m (similar to e.g., Vionnet et al., 2019), 

corresponding to four sites in total for all variables except for PS (three) and PR (nine). After this exclusion, the average 

difference between modelled and observed terrain height at all stations is within ± 8 m for each dataset. We also excluded 110 

any days with missing observational data when computing daily statistics. We did not evaluate radiation variables, as only 

sunshine hours are available from the DWD in sufficiently large sample sizes. However, for understanding temperature 

biases in WRF during summer 2018, we used incoming shortwave radiation from the DWD Climate Data Center dataset 

entitled “Hourly station observations of solar incoming (total/diffuse) and longwave downward radiation for Germany” 

(Table 2). In total, there were four sites with both incoming shortwave (SW) and T data available in Bavaria between 1 June 115 

and 31 August 2018 whose elevation was represented within ±100 m in D2: Nürnberg (id 3668), Weihenstephan-Dürnast 

(5404), Würzburg (5705), and Fürstenzell (5856).  

 

For statistical analysis, we computed the mean deviation (MD), mean absolute deviation (MAD), and the coefficient of 

determination (R2) between station data and data from the closest grid point in D2 without spatial interpolation at two-hourly 120 

and daily temporal frequency. The MD, also referred to here as the model bias, and the MAD were computed from 

observation minus model. For precipitation, only daily totals were evaluated, and the MD and MAD were computed 

considering only days with non-zero observed precipitation.  

 

Finally, we also compared night-time land surface temperature (LST) from the MODIS MYD11A1 dataset (Table 2) at 1-km 125 

spatial and daily temporal resolution with simulated skin temperature in D2 for the period of 1 June to 31 August 2018. The 

night view time ranged from 1.2 to 2.8 hours in local solar time, with a domain and time averaged value of 2.2 hours. As 

WRF data were only available at two-hourly timesteps, we averaged 00 and 02 UTC (01 and 03 local time) data from D2 for 
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comparison with MODIS. In our comparison, we excluded nights when MODIS had more than 50% missing data over D2, 

leaving a sample size of 52. 130 

2.3 Forcing Strategy 

For the evaluation period, we compared two simulations with different forcing approaches, one excluding and one including 

grid analysis nudging to constrain drift in the large-scale circulation (e.g., Bowden et al., 2013). We refer to these 

simulations as WRF_NO_NUDGE and WRF_NUDGE in Section 3.1, respectively. For the WRF_NUDGE simulation, 

analysis nudging was applied in D1 outside of the planetary boundary layer and above the lowest 10 model levels using the 135 

default strength (3.0 x 10-4) for temperature and winds and reduced strength (5.0 x 10-5) for the water vapor mixing ratio 

(e.g., Otte et al., 2012), consistent with a previous decadal application of WRF (Collier et al., 2018). Given the 

computational expense of each annual simulation, we did not attempt to optimize the nudging coefficients for our study area 

and instead evaluate simply whether nudging in this form improves the simulated atmospheric variables or not. 

2.4 Climatological Analysis 140 

To briefly evaluate the full climatological simulation, we compared simulated and observed monthly mean T from the DWD 

dataset ‘MO_TT_MN004’ (Table 2), with a sample size of 26 stations that remained after filtering for height differences 

exceeding 100 m, the presence of missing data, and stations located in grid cells classified as urban (see Sect. 3.1). For the 

distributed trend analysis, we did not apply a field significance test (e.g., Wilks, 2016) due to the small sample size. Future 

users should rigorously evaluate biases for the variables, time periods, and resolutions relevant to their particular 145 

applications. 

 

We note that unphysically large sub-surface temperatures were simulated at a number of glacierized grid points, primarily  

during the months of July to September. Considering all of D2, the daily average number of affected grid cells was 24, 

compared with 294 glacierized and 122,500 total cells. The maximum number of affected grid points was 274 on 31 August 150 

2017, corresponding to 0.2% of D2. In addition, over the climatological simulation, only one grid point in Bavaria was 

affected (J = 71, I = 285; 47.4952°N, 13.6039°E). Surface temperature remained physical, since it is limited at the melting 

point over glacier surfaces, and soil moisture was unaffected, since it is specified to be fully saturated in glacierized grid 

cells. No other land-use categories were affected, and adjacent grid points were also unaffected, as the land surface model 

operates as a column model with no lateral communication. To preclude usage of these data, sub-surface temperature was set 155 

to missing where it exceeded 273.16 at glacierized grid points in BAYWRF. More information about this numerical issue is 

available on the model’s GitHub repository (https://github.com/wrf-model/WRF/issues/1185; last accessed 24 May 2020). 
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3 Results & Discussion 

3.1 Model Evaluation 

Averaged over the evaluation year, both WRF simulations capture the magnitude and variability of sub-diurnal near-surface 160 

meteorological conditions at most sites well (Fig. 3; Table 3). The interquartile range (IQR; range between upper and lower 

quartile) of MDs is one order of magnitude smaller than the observed standard deviation for all variables. As expected, 

variability is best captured for T and PS, with R2 values that uniformly exceed 0.87 and 0.96, respectively. Those of RH have 

a larger range but a lower quartile above ~0.55. Compared with these variables, the model shows less skill in simulating sub-

diurnal variability in winds, with lower quartiles of R2 for U and V of approximately 0.39 and 0.27, respectively. Shifting to 165 

daily timescales, both simulations represent variability in daily total PR surprisingly well, with IQRs of MDs below ~1.25 

mm and lower quartiles of R2 exceeding 0.18 and 0.33, depending on the simulation. Previous studies have reported Root 

Mean Square Deviations (RMSD). For direct comparison, the mean RMSD in WRF_NUDGE for two-hourly T and RH is 

2.67 K and 13.7%, respectively, and for daily total precipitation is 5.27 mm. These values are similar to but lower than 

previously reported biases in WRF at 5-km grid spacing over Bavaria for the period of 2001—2009 (Warscher et al., 2019).  170 

 

Examination of model biases on a monthly basis reveals further insights into the model performance (Fig. 4). The amplitude 

of the annual cycle is overpredicted in WRF, indicating that the good average agreement in T results from compensating 

biases: there is a cold bias in WRF in winter, a well-known issue with the model over snow-covered surfaces (e.g., Tomasi et 

al., 2017), and a warm bias in summer (Fig. 4a). The latter bias results in an underprediction of RH during this season (Fig. 175 

4b), suggesting that WRF represents absolute humidity more accurately. The summer temperature bias is also more sustained 

than the winter one, resulting in the long tails (heads) in the distribution of MDs of T (RH) in Fig. 3. There is also a general 

underprediction of near-surface winds from fall to early winter, as exemplified by the results for U in Fig. 4c and the slight 

positive skewness of the distribution of MDs for both U and V in Fig. 3, consistent with overly stable atmospheric conditions 

resulting from the cold bias. Finally, the model tends to overestimate precipitation in early spring and underestimate it in 180 

summer and fall. 

 

Figure 5 shows a representative timeseries of T and SW for the station in Nürnberg (3668) in June 2018. The timeseries 

illustrates that the positive temperature bias in summer 2018 results from two distinct contributions. First, there is an 

overestimation of daytime maximum T, coinciding with an overestimation of SW. This relationship is observed both at 185 

Nürnberg and at the other three stations for which both datasets are available (Fig. 6a; cf. Sect. 2.2). The overestimation 

suggests there is an underestimation of either daytime cloudiness or its impact on incoming SW at the surface, likely 

stemming from the microphysics parameterization. Second, there is an overestimation of night-time minimum T, suggesting 

that land-surface processes may play a role. Of the 101 stations with T measurements available, the dominant land-use 

categories of the grid cells containing stations are: 'Urban’ (10 sites); 'Dryland Cropland and Pasture' (4 sites); 'Grassland' 190 
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(72 sites); 'Deciduous Broadleaf Forest' (1 sites); 'Evergreen Needleleaf Forest' (11 sites); and, 'Mixed Forest' (3 sites). The 

overestimation of night-time T is greatest at stations located in grid cells classified as urban (Fig. 6b), consistent with a 

previous evaluation of WRF with the Noah-MP LSM for urban and rural stations in summer (Salamanca et al., 2018). The 

bias amplification in urban grid cells may reflect an incorrect classification of the underlying land surface in WRF, as only 

the München-Stadt station (id 3379) is listed as an urban station on the DWD’s list for computing heat island effects. It may 195 

also result from an overestimation of heat storage when a mosaic approach is not used, and therefore the entire grid cell is 

treated as urban (Daniel Fenner, personal communication). The potential role of the land-surface specification or properties 

is reinforced by the comparison with MODIS data (Fig. 7), which shows the largest warm biases over grid cells classified as 

urban or croplands while biases are smaller in forested areas. There is also a cold bias along the foothills and at higher 

elevations in the Alps. The biases are slightly smaller in WRF_NUDGE than in WRF_NO_NUDGE, consistent with the 200 

station-based assessment.  

 

In addition to factors internal to WRF, we note that the driving reanalysis data may also contribute to the warm bias, at least 

at some locations. From the available observations, 60 stations have both valid T data between June and August 2018 and a 

modelled elevation in ERA5 that is within ±100 m of reality. Averaged over the summer months and all stations, ERA5 has 205 

a mean warm bias of 0.37°C. At 25 of the sites, a warm bias exceeding 0.5°C is present, with an average value over these 

sites of 0.92°C.  

3.2 Impact of Grid Analysis Nudging 

The inclusion of grid analysis nudging leads to a small but nearly uniform improvement in agreement between observed and 

simulated variables. The distribution of MDs is closer to zero for all variables except U and PS, while those of MADs are 210 

closer for all variables (cf. Fig. 3 and Table 3). R2 values are also uniformly higher when nudging is used, and the lowest 

lower-quartile value is 0.3 in WRF_NUDGE compared with only 0.18 in WRF_NO_NUDGE. Nudging produces a 

particularly noticeable improvement in simulated precipitation, halving the MD and nearly doubling the R2 values (cf. Fig. 3, 

Fig. 4 and Table 3). Its usage also reduces the magnitude of the seasonal temperature biases and the number of extreme 

occurrences of the warm bias in summer (cf. Fig. 4 and Fig. 6). Considering daily timescales (the temporal resolution of data 215 

available in BAYWRF), the agreement of WRF_NUDGE with the observations is similar or even improved (Table 4): the 

mean MD is largely unaffected, but the average MAD decreases and average R2 increases. Based on these improvements, 

grid analysis nudging was adopted for the climatological simulations. 

3.3 Climatological Simulations 

Figure 8a compares simulated and observed annual mean T between 1988 and 2018 at the 33 stations with data available 220 

after filtering (cf. Sect. 2.4). WRF captures the variability in annual T well, although the data and its spread are slightly 

underestimated during the late 1990s and 2000s. The observations have a statistically significant trend of 0.28 K/decade (p = 
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0.04) while the model data do not (0.2 K/decade, p = 0.2) although this statistical analysis is very sensitive with such a small 

sample size. However, inspection of T trends by month reveals that WRF overestimates the slight cooling trends observed 

between January and March (statistically insignificant in both data sources; not shown), due to the winter cold bias and/or 225 

potential errors in snow depth and extent, which may contribute to an underestimate of the annual warming trend. Trends are 

otherwise well captured, including the three months with statistically significant observed trends: April (OBS: 0.83; 

WRF:0.75 K/decade); June (OBS: 0.75; WRF:0.71 K/decade); and, November (OBS: 0.72; WRF:0.71 K/decade). WRF 

similarly captures the variability of summer mean (June, July, August; JJA) temperature (Fig. 8b), although the warm bias at 

the station locations is again apparent. The observed trend is 0.49 K/decade compared with 0.48 in WRF (p<0.05). 230 

Furthermore, the model captures recent extreme summers in Western and Central Europe in 2003, 2015 and 2018, which in 

combination with drought have had severe impacts on economies, public health (e.g., Muthers et al., 2017), and primary 

productivity (e.g., Ciais et al., 2005).  

 

Here we note that in addition to the potential factors contributing to temperature biases discussed in Section 3.1, evaluation 235 

of the climatological simulation is also affected by discontinuities in station location. One example is Nürnberg (id 3668), 

which moved on 4 December 1995 from (49.4947ºN, 11.0806ºE) to (49.5030ºN, 11.0549ºE). The older station position is 

shifted one grid cell to the south and one grid cell to the west compared with its current location, corresponding to a shift in 

land use from urban (old position) to grasslands (new). Any discontinuities in location and underlying surface type are not 

captured since the most recent station positions are used for extracting T data from D2. 240 

 

Spatially distributed trends in T are strongest and significant over the largest in area during JJA (Fig. 9a; other seasons not 

shown), ranging from ~0.3 to 0.7 K/decade over Bavaria. Trends in precipitable water are likewise uniformly positive over 

the study region, ranging from ~0.2 to 0.3 mm/decade. The trends of both fields also have a positive gradient between 

southwestern and northeastern Bavaria. These results agree qualitatively and quantitively with previous studies (e.g., 245 

Alshawaf et al., 2017).  

4 Data Availability 

Data from BAYWRF are available for download on the Open Science Framework (OSF; Collier, 2020; 

https://www.doi.org/10.17605/OSF.IO/AQ58B). Due to the size of the simulations, we have only provided daily mean data 

from the finest WRF domain (D2; 1.5-km grid spacing) after cropping close to the extent of Bavaria and removing vertical 250 

levels above ~ 200 hPa, amounting to 450 GB in total. Data are divided into three- and four-dimensional fields by year and 

month, with respective file sizes of ~150 MB and 1.1 GB. For the four-dimensional data, perturbation and base-state 

atmospheric pressure (WRF variables P and PB) and geopotential (PH and PHB) were combined to generate full model 
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fields, while perturbation potential temperature (T) was converted to atmospheric temperature. Subsets of D1 or sub-diurnal 

data can be made available upon request.  255 

5 Conclusions 

We presented a climatological, convection-permitting simulation with the atmospheric model WRF over Bavaria for the 

period of September 1987 to August 2018. For the evaluation period of September 2017 to August 2018, we compared the 

simulations with meteorological measurements across Bavaria and evaluated the impact of using grid-analysis nudging. We 

found that the model reproduced variability in near-surface meteorological conditions well, although seasonal temperature 260 

biases were present. Grid analysis nudging decreased the mean deviations and increased the correlations between simulations 

and observations at the majority of sites for nearly all evaluated atmospheric variables, with a particularly noticeable 

improvement for simulated daily precipitation. BAYWRF provides a useful database for linking large-scale climate, as 

represented by the ERA5 reanalysis, to mesoscale climate over Germany, to local conditions in Bavaria, in a physically 

based way. The data are intended for dendroecological research applications but would also provide a valuable tool for 265 

investigations of the climate dependence of economic, societal, ecological, and agricultural processes in Bavaria. 
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 365 
Figure 1: Extent and modelled topographic height [m] in WRF D1 (a) and D2 (b). The extent of D2 and of Bavaria are 
delineated in black in the top and bottom panels, respectively.  
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 370 

Figure 2: The location of the stations used for model evaluation for each dataset listed in Table 2. Datasets labelled in black 
are shown by filled black circles, while datasets labelled in pink are shown by open pink circles, illustrating that locations for 
measurements of air temperature and humidity (a; TT_TU_MN009 & RF_TU_MN009) and of wind speed and direction (b; 
F_MN003 & D_MN003) were the same. The locations for measurements of surface pressure (P0_MN008) and of 
precipitation (R1_MN008) are shown in panels c and d, respectively. 375 
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Figure 3: Box-percentile plots (Esty and Banfield, 2003) of mean deviation (MD), mean absolute deviation (MAD), and 
coefficient of determination (R2) between observations and the two WRF simulations, WRF_NO_NUDGE (blue) and 
WRF_NUDGE (green), for 2-m (a) air temperature and (b) relative humidity, 10-m (c) zonal and (d) meridional winds, (e) 
surface pressure and (f) precipitation. The statistics for all variables except for precipitation were computed from two-hourly 380 
instantaneous values, while those for precipitation were computed using daily totals. The shape of the plots shows the 
distribution of data over their range of values, white lines delineate 25th, 50th and 75th percentiles, and a black dot indicates 
the mean. The observed standard deviation (σobs) for each variable is provided in the left column.  
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Figure 4: Timeseries of monthly mean 2-m (a) air temperature and (b) relative humidity, (c) 10-m zonal winds, and (d) daily 385 
total precipitation (left column) between September 2017 and August 2018. Observational, WRF_NO_NUDGE and 
WRF_NUDGE data are shown in black, blue and green, respectively. Timeseries of monthly mean biases of the same 
variables (right column). The mean bias over all stations is shown for each simulation using the same colour assignment, 
while the lower and upper quartile of the station biases is shown as a blue polygon and green bars for WRF_NO_NUDGE 
and WRF_NUDGE data, respectively. 390 
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 400 

 

Figure 5: Timeseries of (a) 2-m air temperature and (b) incoming shortwave radiation at the station in Nürnberg (id 3668) 
from 1 June to 1 July 2018. Observational, WRF_NO_NUDGE and WRF_NUDGE data are shown in black, blue and green, 
respectively. 
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 410 
Figure 6: Scatter plots of (a) air temperature bias [ºC] vs. incoming shortwave radiation bias [W m-2] and (b) air temperature 
bias [ºC] vs. land-use category in closest grid cell to station. The category abbreviations from left to right describe: 'Urban 
and Built-Up Land’ (10 sites); 'Dryland Cropland and Pasture' (4 sites); 'Grassland' (72 sites); 'Deciduous Broadleaf Forest' 
(1 sites); 'Evergreen Needleleaf Forest' (11 sites); and, 'Mixed Forest' (3 sites). For both panels, data from 
WRF_NO_NUDGE and WRF_NUDGE are displayed as blue square and green circle markers, respectively. 415 

 

https://doi.org/10.5194/essd-2020-52

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Preprint. Discussion started: 28 May 2020
c© Author(s) 2020. CC BY 4.0 License.



19 
 

 

 

 

 420 

 

 

Figure 7: (a) Land-use classification in D2. (b) Number of timesteps with valid night-time LST data in the MODIS 
MYD11A1 dataset between 1 June and 31 August 2018 out of a maximum of 52 with less than 50% missing data in D2. The 
average difference in observed and simulated LST for (c) WRF_NO_NUDGE and (d) WRF_NUDGE. 425 
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 430 

 

 

 

 

 435 

 
Figure 8: Comparison of (a) annual mean and (b) JJA mean 2-m air temperature from 1988 to 2018 averaged over all 
observations (black curve) and the corresponding grid points in WRF (blue curve). The shaded polygons delineate the range 
of values. To maximize data availability, annual means were computed from September of year n-1 to August of year n. 
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Figure 9: Spatially distributed trends of (a) JJA mean 2-m air temperature and (b) annual mean precipitable water over the 
climatological simulation period. Cross hatching shows where the trend is significant at the 95% level.  
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Table 1: A summary of the WRF configuration used for the simulations. 

Table 1: WRF 
configuration 

  

Domain configuration   
Horizontal grid spacing 7.5 & 1.5 km (D1–2)  
Grid dimensions 351x301, 351x351  
Time step 45 & 9 s  
Vertical levels 60  
Model top pressure 1000 hPa  
Model physics   
Radiation RRTMG (Iacono et al., 2008) 
Microphysics Morrison (Morrison et al., 2009) 
Cumulus Kain-Fritsch (none in D2) (Kain, 2004) 
Planetary boundary layer Yonsei State University (Hong et al., 2006) 
Atmospheric surface layer Monin Obukhov  (Jiménez et al., 2012) 
Land surface Noah-MP (Niu et al., 2011) 
Dynamics   
Top boundary condition Rayleigh damping  
Diffusion Calculated in physical space  

 

 

 460 

Table 2: A summary of data used for model evaluation. Rows highlighted in grey provide information about 
observational data from the DWD CDC Data Portal, whose measurement locations are shown in Figure 2. 

 
 

 465 

 

Dataset Name Variable [unit] Temporal 
Resolution

Total Stations 
in Bavaria Version Access URL Last Accessed Dataset Description

TT_TU_MN009 2-m air temperature [℃] Hourly 106 v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/TT_TU_MN009/DESCRIPTION_TT_TU_MN009_en.pdf

RF_TU_MN009 2-m relative humidity [%] Hourly 106 v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/RF_TU_MN009/DESCRIPTION_RF_TU_MN009_en.pdf

F_MN003 10-m wind speed [m/s] Hourly 57 v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/F_MN003/DESCRIPTION_F_MN003_en.pdf

D_MN003 10-m wind direction [deg] Hourly 57 v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/D_MN003/DESCRIPTION_D_MN003_en.pdf

P0_MN008 surface pressure [hPa] Hourly 38 v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/P0_MN008/DESCRIPTION_P0_MN008_en.pdf

R1_MN008 precipitation [mm] Hourly 213 v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/R1_MN008/DESCRIPTION_R1_MN008_en.pdf

Hourly station 
observations of solar 

incoming 
(total/diffuse) and 

longwave downward 
radiation for Germany

Incoming longwave and 
shortwave radiation [J/cm2] Hourly 10 recent https://cdc.dwd.de/portal https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/hourl

y/solar//DESCRIPTION_obsgermany_climate_hourly_solar_en.pdf

MO_TT_MN004 2-m air temperature [℃] Monthly 244 v19.3 https://cdc.dwd.de/portal https://cdc.dwd.de/sdi/pid/MO_TT_MN004/DESCRIPTION_MO_TT_MN004_en.pdf

MODIS MYD11A1 land surface temperature [K] Daily -- v006 https://lpdaacsvc.cr.usgs.gov/appeears https://lpdaac.usgs.gov/products/myd11a1v006/

24 May 2020
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Table 3: A summary of the statistical evaluation of the WRF_NO_NUDGE (italics) and WRF_NUDGE (bold italics) 

simulations, considering the whole evaluation period of 1 September 2017 to 1 September 2018. The table presents 

the mean deviation (MD), the mean absolute deviation (MAD) and the coefficient of determination (R2) for two-

hourly 2-m air temperature (T) and relative humidity RH), 10-m zonal wind (U) and meridional wind (V), surface 470 

pressure (PS), and daily total precipitation (PR). All computations are made from observations minus model data. 

 
 

Table 4: Same as Table 3 but for daily mean variables in WRF_NUDGE only. 

 475 

Variable MD MAD R2
T (WRF_NO_NUDGE) 0.2 2.3 0.94

T (WRF_NUDGE) 0.1 2.0 0.95
RH 3.5 11.3 0.59
RH 3.0 10.5 0.66
U 0.1 1.5 0.48
U 0.2 1.4 0.53
V 0.2 1.2 0.35
V 0.2 1.1 0.40
PS -0.7 2.2 0.97
PS -0.8 2.0 0.99
PR 0.8 3.3 0.25
PR 0.4 2.9 0.42

Variable MD MAD R2
T 0.1 1.7 0.97
RH 3.0 8.4 0.71
U 0.2 0.9 0.72
V 0.2 0.6 0.64
PS -0.8 2.0 0.99
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